3 research outputs found

    Extracting Data-Level Parallelism in High-Level Synthesis for Reconfigurable Architectures

    Get PDF
    High-Level Synthesis (HLS) tools are a set of algorithms that allow programmers to obtain implementable Hardware Description Language (HDL) code from specifications written high-level, sequential languages such as C, C++, or Java. HLS has allowed programmers to code in their preferred language while still obtaining all the benefits hardware acceleration has to offer without them needing to be intimately familiar with the hardware platform of the accelerator. In this work we summarize and expand upon several of our approaches to improve the automatic memory banking capabilities of HLS tools targeting reconfigurable architectures, namely Field-Programmable Gate Arrays or FPGA\u27s. We explored several approaches to automatically find the optimal partition factor and a usable banking scheme for stencil kernels including a tessellation based approach using multiple families of hyperplanes to do the partitioning which was able to find a better banking factor than current state-of-the-art methods and a graph theory methodology that allowed us to mathematically prove the optimality of our banking solutions. For non-stencil kernels we relaxed some of the conditions in our graph-based model to propose a best-effort solution to arbitrarily reduce memory access conflicts (simultaneous accesses to the same memory bank). We also proposed a non-linear transformation using prime factorization to convert a small subset of non-stencil kernels into stencil memory accesses, allowing us to use all previous work in memory partition to them. Our approaches were able to obtain better results than commercial tools and state-of-the-art algorithms in terms of reduced resource utilization and increased frequency of operation. We were also able to obtain better partition factors for some stencil kernels and usable baking schemes for non-stencil kernels with better performance than any applicable existing algorithm

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore